엘라스틱서치 7.0이 출시했다.

엘라스틱서치 7.0에는 kibana UI변경과 multi mapping type 제거 등의 이슈가 있다.

우선 달라진점을 확인하기 위해 docker에 설치해보자.

설치

elasticsearch

docker run --name elastic7.0 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:7.0.0

 

kibana

docker run -d --rm --link elastic7.0:elastic-url -e "ELASTICSEARCH_HOSTS=http://elastic-url:9200" -p 5601:5601 --name kibana7.0 docker.elastic.co/kibana/kibana:7.0.0

설치가 끝나고 프로세스를 확인해보면 elastic과 kibana가 올라가 있는 것을 확인할 수있다.

 

kibana UI 확인

키바나에 접속해 보니 엄청 깨끗하다. 몬가 되게 플랫해진 요새 디자인을 하고 있다. 5부터 6까지 변할때도 몬가 키바나가 멋있어졌다고 느꼈는데 이번에 7버전은 더 멋진 것 같다.

그리고 더 대단한 건 요새 대세인 다크모드가 지원된다.

다크모드는 setting > kibana > advanced settings > dark mode 위치에 가면 다음과 같은 설정 하는 부분이 있다.

설정 후 새로고침을 하면 적용되는데 화면이 멋있다.

 

그리고 멀티 맵핑 타입이 제거되고 등등 다른 변경사항이 있는데 아래 링크를 확인하면 된다.

근데 릴리즈하면서 마지막 글에 보면 기존에 elastic을 6버전 이상 사용하고 있으면 굳이 업데이트 할 필요는 없다고 한다 ㅋㅋ

 

변경사항

https://www.elastic.co/blog/elastic-stack-7-0-0-released

집에서 개인적으로 사용할 nas를 구입했다.


간단하게 파일 저장하고 공유하고 docker를 사용해서 mysql, redis등을 사용하기 위해서 구입했다.


위메프에서 ds118 20만원에 구입하고 wd 1tb nas용 하드를 구입했다. 구입은 맥을 사면서 적립되었던 포인트를 사용해서 실질적으로 구매비용은 10만원정도 들었다.


사실 하드를 nas용으로 사야하나 싶었으나 인터넷에 알아보니 nas에 일반 하드를 설치하면 고장날 확률이 많다고 한다. 대표적으로 nas에 경우 24시간 켜져있고 진동이 하드에 전달되기 때문에 고장난 확률이 높아진다고 한다. 그래서 nas 하드를 위메프에서 7만원에 구매했다.


박스는 안전하게 포장되어 왔다.

생각보다 가볍다. 비싼 제품인데 봉인 씰이 없는건 아쉽다.


내부를 뜯어보면 어댑터와 랜선 그리고 본체가 전부이다. ㅋㅋ

정말 별거없는데 드럽게 비싸다.


이제 이 제품들을 이용해서 nas를 구축해보자.

우선 같이 구입한 1TB NAS용 하드디스크를 뜯어보자.

아주 튼튼하다. 오랜만이다 맨날 2.5인치 ssd만 보다가 오랜만에 3.5인치 하드를 보니 낯설기도 하다 ㅋㅋ

순서에 맞게 하드를 자리에 꼽아준다.


같이 동봉된 나사를 각면마다 3개씩 꼽아준다.

설치가 완료되면 어댑터랑 랜선을 꼽고 자리에 배치해준다. 크기는 생각보다 작아서 책상위에 올려놓아도 아담하고 소음도 전혀없다.

이제 설정을 위해서 에이전트 화면에 접속해야하는데 같은 망에서 아래 기재되어 있는  url에 접속한다.



find.synology.com에 접속하게 되면 현재 같은 망에 연결되어있는 NAS 장비가 보여지고 DSM(synology os)를 설치할 수 있게 가이드가 주어진다.


하드디스크를 선택하고 설치를 진행한다.


설치는 사람들은 10분정도 걸린다고 하는데 나는 2분도 안걸린 것 같다.


설치가 완료되면 보안 작업을 해줘야하는데 대표적으로 DSM 포트변경, 접속 지역 제한, 알려진 포트 (22, 21....) 변경 및 차단, admin 계정 비활성화 등등 진행해야한다.


생각보다 좋다. 이거보다 더 느린 nas인 ds119j나 ds218j등을 사용했으면 큰일날뻔했다. 이것도 그렇게 빠르지 않아서 ㅋㅋㅋ 


아직 낯설고 어색하지만 잘 써보자.


  1. Favicon of https://kyome.tistory.com BlogIcon KYOME 2019.07.11 16:35 신고

    혹시 도커 설치하셨나요? ds118 글보고 도커 설치 할 수있겠다 싶어서 구매했는데..도저히 방법을 모르겠네요 도와주세요 ㅜㅜ

  2. Favicon of https://kyome.tistory.com BlogIcon KYOME 2019.07.11 16:38 신고

    방법이 없네요 ㅠㅠ 118로 우분투 돌릴 수 있는 방법은 없겠죠??

    • Favicon of https://wedul.site BlogIcon 위들 wedul 2019.07.11 16:38 신고

      어려울거에요. 저도 요새들어 더 좋은 나스 살걸 후회하고 있어요 ㅠ

  3. Favicon of https://kyome.tistory.com BlogIcon KYOME 2019.07.11 16:41 신고

    할 수 있는게 너무 제한적이네요..ㅜㅜ 알겠습니다 고마워요

Elasticsearch를 Spring Boot에서 작업을 하는 간단한 정리를 해보자.


1. Library 추가

Elasticsearch를 사용하기 위해서는 spring-data-elasticsearch 라이브러리가 추가되어야 한다. 

gradle에 추가해보자.

1
2
3
4
5
6
7
dependencies {
    implementation 'org.springframework.boot:spring-boot-starter-data-elasticsearch'
    implementation 'org.springframework.boot:spring-boot-starter-web'
    testImplementation 'org.springframework.boot:spring-boot-starter-test'
    compileOnly "org.projectlombok:lombok:1.16.16"
}
 
cs


spring-data-elasticsearch 버전별로 호환되는 elasticsearch가 상이하니 참고

spring data elasticsearchelasticsearch
3.2.x6.5.0
3.1.x6.2.2
3.0.x5.5.0
2.1.x2.4.0
2.0.x2.2.0
1.3.x1.5.2


2. Configuration

Elasticsearch에 접속하기 위한 Configuration을 정의해준다.

Elasticsearch  접속을 위해서는 host, port, cluster name이 필요하다. cluster name을 알아야 하는데 docker에 설치 한 경우 여기서 확인하면 된다.

우선 docker exec -it elastic bash로 콘솔에 접속한 후에 elasticsearch.yml에 적혀있는 cluster name을 확인한다.

그리고 application.properties에 설정 내용을 적어준다.

1
2
3
4
elasticsearch.host=127.0.0.1
elasticsearch.port=9300
elasticsearch.cluster_name=docker-cluster
spring.main.allow-bean-definition-overriding=true
cs

그리고 EnableElasticsearchRepositories 애노테이션을 설정한 Configuration 클래스를 만들어준다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
package com.elasticsearch.study.configuration;
 
import org.springframework.beans.factory.annotation.Value;
import org.elasticsearch.client.Client;
import org.elasticsearch.client.transport.TransportClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.transport.TransportAddress;
import org.elasticsearch.transport.client.PreBuiltTransportClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.elasticsearch.core.ElasticsearchOperations;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.data.elasticsearch.repository.config.EnableElasticsearchRepositories;
 
import java.net.InetAddress;
 
/**
 * Elasticsearch Configuration
 *
 * @author wedul
 * @since 2019-02-09
 **/
@EnableElasticsearchRepositories
@Configuration
public class ElasticConfiguration {
 
  @Value("${elasticsearch.host}")
  private String host;
 
  @Value("${elasticsearch.port}")
  private int port;
 
  @Value("${elasticsearch.cluster_name")
  private String clusterName;
 
  @Bean
  public Client client() throws Exception {
    Settings settings = Settings.builder().put("cluster.name", clusterName).build();
 
    TransportClient client = new PreBuiltTransportClient(settings);
    client.addTransportAddress(new TransportAddress(InetAddress.getByName(host), port));
    return client;
  }
 
  @Bean
  public ElasticsearchOperations elasticsearchTemplate() throws Exception {
    return new ElasticsearchTemplate(client());
  }
 
}
 
cs


3. DTO 생성

Elasticsearch에서 Document 내용을 담을 DTO를 만들어주고 @Document 애노테이션을 달고 index name과 type을 정의해준다.

@Id 어노테이션이 붙은 필드는 각 Doucument에 붙어있는 _id 값이다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package com.elasticsearch.study.dto;
 
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
 
/**
 * studyFor
 *
 * @author wedul
 * @since 2019-02-09
 **/
@Data
@AllArgsConstructor
@NoArgsConstructor
@ToString
@Document(indexName = "wedul_play", type = "story")
public class WedulPlay {
 
  @Id
  private String id;
  private String title;
  private String user;
  private long startAt;
  private long endAt;
 
}
 
cs


4. Repository

JPA를 사용하면 익숙할 패턴으로 Elasticsearch에서도 ElasticsearchRepository가 존재한다. 사용방법은 JPA와 동일하게 저장할 때는 save, 조회할 때는 find(), findByUser()등으로 사용할 수 있다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package com.elasticsearch.study.repository;
 
import com.elasticsearch.study.dto.WedulPlay;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
import org.springframework.stereotype.Repository;
 
/**
 * study
 *
 * @author wedul
 * @since 2019-02-09
 **/
@Repository("wedulPlayRepository")
public interface WedulPlayRepository extends ElasticsearchRepository<WedulPlay, String> {
 
  WedulPlay findByUser(String user);
  
}
 
cs


5. Service

지금 테스트 하는 부분에서는 크게 비즈니스 로직에 들어갈 소스가 없다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
package com.elasticsearch.study.service;
 
import com.elasticsearch.study.dto.WedulPlay;
import com.elasticsearch.study.repository.WedulPlayRepository;
import com.google.common.collect.Lists;
import lombok.AllArgsConstructor;
import lombok.NoArgsConstructor;
import org.springframework.stereotype.Service;
 
import java.util.List;
 
/**
 * study
 *
 * @author wedul
 * @since 2019-02-09
 **/
@AllArgsConstructor
@NoArgsConstructor
@Service
public class WedulPlayService {
 
  private WedulPlayRepository wedulPlayRepository;
 
  public void save(WedulPlay play) {
    wedulPlayRepository.save(play);
  }
 
  public List<WedulPlay> findAll() {
    return Lists.newArrayList(wedulPlayRepository.findAll());
  }
 
  public WedulPlay findByUser(String user) {
    return wedulPlayRepository.findByUser(user);
  }
 
}
 
cs


6. Test 코드

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
package com.elasticsearch.study.wedulplay;
 
import com.elasticsearch.study.dto.WedulPlay;
import com.elasticsearch.study.repository.WedulPlayRepository;
import com.elasticsearch.study.service.WedulPlayService;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
 
import java.util.List;
 
import org.hamcrest.core.IsNull;
import static org.hamcrest.CoreMatchers.*;
import static org.junit.Assert.*;
 
/**
 * wedul play document 조회
 *
 * @author wedul
 * @since 2019-02-09
 **/
@RunWith(SpringRunner.class)
@SpringBootTest
public class WedulPlayTest {
 
  WedulPlayService wedulPlayService;
 
  @Autowired
  @Qualifier("wedulPlayRepository")
  WedulPlayRepository wedulPlayRepository;
 
  @Before
  public void setup() {
    wedulPlayService = new WedulPlayService(wedulPlayRepository);
  }
 
  @Test
  public void whenValidParameter_thenSuccessFind() {
    List<WedulPlay> list = wedulPlayService.findAll();
 
    assertNotNull(list);
  }
 
  @Test
  public void whenValidParameter_thenSuccessSave() {
    Exception ex = null;
 
    try {
      wedulPlayService.save(WedulPlay.builder().title("안녕 이건 테스트야").user("위들").startAt(1242421424).endAt(23214124).build());
    } catch (Exception exception) {
      ex = exception;
    }
 
    assertTrue(null == ex);
  }
 
  @Test
  public void whenValidParameter_thenSuccessFindByUser() {
    Exception ex = null;
 
    try {
      WedulPlay play = wedulPlayService.findByUser("위들");
 
      assertThat(play, is(IsNull.notNullValue()));
    } catch (Exception exception) {
      ex = exception;
    }
 
    assertTrue(null == ex);
  }
 
 
}
 
cs


설정이 간단하다. 

나중에 이용해 먹어야지


자세한 소스코드는 여기 참조

https://github.com/weduls/spring_elastic

회사에서 사용하는 Elasticsearch 공부를 위해서 docker에 설치해보고 시각화에 도움주는 Kibana도 같이 설치해보자.

우선 Elasticsearch에 대한 기본 정보는 API 문서에서 확인할 수 있다.
https://www.elastic.co/guide/kr/elasticsearch/reference/current/gs-index-query.html


Elasticsearch 설치

해당 이미지에는 xpack도 포함되어있다. xpack은 보안, 알림, 모니터링, 보고, 그래프 기능을 설치하기 편리한 단일 패키지로 번들 구성한 Elastic Stack 확장 프로그램이다.


우선 이미지를 내려받는다.

1
docker pull docker.elastic.co/elasticsearch/elasticsearch-platinum:6.0.0
cs

그리고 내려받은 이미지를 이용하여 Elasticsearch를 conatiner에 올려서 실행시킨다.

1
docker run --9200:9200 -9300:9300 -"discovery.type=single-node" -"transport.host=127.0.0.1" ---name elastic docker.elastic.co/elasticsearch/elasticsearch-platinum:6.0.0 && sleep 20
cs

그리고 xpack 설치를 진행하기 위해서 우선 해당 컨테이너 bash 쉘을 실행시킨다.

1
2
// bash shell 열기
docker exec -it elastic /bin/bash
cs

그리고 xpack을 설치한다.

1
bin/elasticsearch-plugin install x-pack
cs


마지막으로 Elasticsearch에서 자동 색인 생성을 비활성화 해준경우에 xpack에서 다음 색인을 생성할 수 있도록 elasticsearch.yml에 설정해준다.

1
action.auto_create_index: .security,.monitoring*,.watches,.triggered_watches,.watcher-history*
cs


그러고 http://localhost:9200에 들어가면 정상적으로 설치된것을 확인할 수 있다. (계정입력하는 화면이 나오면 elastic / changeme 정보를 이용해서 사용한다.

Kibana 설치

Docker 이미지 다운

1
docker pull docker.elastic.co/kibana/kibana:6.0.0
cs

container에 이미지 올리기

1
docker run -d --rm --link dazzling_mayer:elastic-url -e "ELASTICSEARCH_URL=http://elastic-url:9200" -p 5601:5601 --name kibana docker.elastic.co/kibana/kibana:6.0.0 && sleep 20
cs


Index 추가


처음 접속하면 elasticsearch에서 사용하는 index의 이름을 입력하라고 한다. 패턴을 입력하면 되는데 만약 날짜마다 인덱스가 생성되는 구조면 밑에 TimeFilter를 설정을 같이해주고 그게 아니라면 customer* 이런식으로만 지정해줘도 된다.


Docker에 MongoDB를 설치하고 무료 접속 툴인 Studio 3T를 이용해서 접속해보고 쿼리를 사용해보자.

1. Docker에 MongoDB 설치

Docker에서 MongoDB 설치를 위해 필요한 내용을 docker-compose.yml 파일을 만든다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
version: '3'
 
services:
  mongodb:
    image: mongo:latest
    container_name: "mongodb"
    environment:
      - MONGO_DATA_DIR=/data/db
      - MONGO_LOG_DIR=/dev/null
    ports:
      - 27017:27017
    volumes:
      - /Users/wedul/Documents/docker/datafile/mongodb/:/data/db
 
cs

그리고 작성한 명령어를 통해 mongoDB가 담긴 컨테이너를 설치한다.

1
docker-compose up -d
cs

2. 클라이언트 툴 Studio 3T 설치

https://studio3t.com/ 에서 프로그램을 다운로드 한다.


3. 접속하여 쿼리 날려보기

host에 localhost port에 docker-compose.yml에 기재한 포트를 기입하고 접속하면 접속이 된다.
그리고 Query랑 Projection, Sort, Limit등등 사용해서 결과를 확인할 수 있다.



+ Recent posts